PROTONATION OF l-ARYL-3,3,3-TRIFLUOROPROPYNES

Annette D. Allen,^{1a} Giancarlo Angelini,^{1b} Cristina Paradisi,^{1c} Andrew Stevenson, ^{1a} and Thomas T. Tidwell^{1a}

Department of Chemistry, University of Toronto, Scarborough Campus, Scarborough, Ontario, Canada M1C 1A4^{1a}; Istituto di Chimica Nucleare del C.N.R., 00016 Monterotondo Stazione, C.P. 10, Roma, Italy;^{1b} and Istituto di Chimica Organica, Universita di Padova, 35131 Padova, Italylc

Abstract. 1-Aryl-3,3,3-trifluoropropynes (1) react in aqueous acid with $p^+ = -6.5$, and the gas phase basicity of 4-CH₃C₆H₄C=CCF₃ is 7.8 kcal/mol less favorable than that of 4- $CH_3C_6H_4C\equiv CH$, showing high electron demand and major destabilization in ArC=CHCF3.

Protonation of arylalkynes in solution² and in the gas phase³ has been of wide interest, and we have undertaken a study of the effect of the β -CF3 substituent on formation of vinyl carbocations in this reaction, as illustrated in Eq. 1 for hydration in aqueous acid.

$$
ArC \equiv CCF_3 \quad \frac{H^+}{slow} \quad ArC = CHCF_3 \quad \frac{H_2O}{M} \rightarrow ArC = CHCF_3 \quad \longrightarrow ArC'CH_2CF_3 \quad \text{(Eq. 1)}
$$

Despite the strong electron withdrawing power of the CF3 group it has proved possible to generate a variety of carbocations with α -CF₃ substituents.^{4a,b} The destabilization of these carbocations by the α -CF₃ group results in large rate decellerations for their formation by factors of $10⁶$ in many systems, but there are only a few studies of the effects of more remote CF_3 groups.⁴

Rates of hydration of $ArC \equiv CCF_3^5$ catalyzed by H₂SO₄ according to Eq. 1 were measured by UV spectroscopy and gave excellent correlations with the acidity function

1315

 H_0 , as reported in Table I. These reactivities cover a very large range of reactivity (10⁸), and the correlation of the rates with the electrophilic substituent parameter σ^+ (Fig. I) gave a p^+ value of -6.51 ($r = 0.964$). The deviation of the 4-CH₃O derivative below the correlation line and the resulting mediocre correlation coefficient r is likely due to hydrogen-bonding of the acidic solvent to the substituent, a phenomenon observed previously.6

1316

The magnitude of p^+ is much greater than those of -3.8^{2c} and -3.5^{2d} observed for solution phase hydration of $ArC=CH$ and indicates strong electron demand in the transition state. The positive deviation of the point for the 4-Cl derivative suggests an enhanced electronic donation from this group.

The rate ratios k_H +(ArC=CH)/k_H+(ArC=CCF₃) (Table I) decrease with stronger donor power of the aryl substituent and indicate that strong aryl donors overcome much of the transition state destabilization due to the CF_3 . Other studies of β -substituent effects on alkyne protonation show complex behavior.^{2a,7} Thus a CH₃ group at the position of protonation has a variable effect, as $PhC \equiv CCH_3$ is less reactive than $PhC \equiv CH$ by factors of 24^{7a} to 28,^{7d} but CH₃C=CCH₃ is more reactive than CH₃C=CH.^{2a} The acid-catalyzed hydration of phenylpropiolic acids ArC=CCO₂H to ArCOCH₂CO₂H^{7b} and of ArC=CCOPh^{7c} to ArCOCH₂COPh gave $p+$ values of -4.77 and -4.21, respectively, and k_H+ for PhC=CCF₃ is 18 and 42 times greater than those for $PhC \equiv CCO_2H$ and $PhC \equiv CCOPh$, respectively. These effects are under further study.

Measurement of the gas phase basicity of $4-\text{CH}_3\text{C}_6\text{H}_4\text{C} \equiv \text{CCF}_3$ (Eq. 2)⁸ gives a GB value of 189 kcal mol⁻¹, which is 7.8 kcal mol⁻¹ less than that of 4-CH₃C₆H₄C=CH^{3a} $(GB = -\Delta G^{\circ})$. Thus the CF₃ group is having a strong destabilizing effect on the stability of this carbocation in the gas phase which is far greater than suggested by the rate difference of only a factor of 50 for these substrates in solution (Table I). Studies to further elucidate the fascinating behavior of these compounds are underway.

 $4-\text{CH}_3\text{C}_6\text{H}_4\text{C} \equiv \text{CCF}_3$ $+ \text{H}^+ \equiv 4-\text{CH}_3\text{C}_6\text{H}_4\text{C} \equiv \text{CHCF}_3$ (2)

Acknowledgement. Financial support by the Natural Sciences and Engineering Research Council of Canada, a NATO Collaborative Research Fellowship, and the Donors of the Petroleum Research Fund is gratefully acknowledged.

References

(1) (a) University of Toronto. (b) CNR, (c) Universita de Padova.

(2) (a) Allen, A.D.; Chiang, Y.; Kresge, A.J.; Tidwell, T.T. J. Org. Chem., 1982, 47, 775-779. (b) Bott, R.W.; Eaborn, C.; Walton, D.R.M. J. Chem. Soc. 1965, 384-388. (c) Noyce, D.S.; Schiavelli, M.D. J. Am. Chem. Sot. 1968, 90, 1020-1022. (d) Modena, G.; Rivetti, F.; Scorrano, G.; Tonellato, Ibid. 1977, 99, 3392-3395. (e) Chokotho, N.C.J.; Johnson, C.D. Isr. **J.** Chem., 1985, 26, 409-413.

(3) (a) Marcuzzi, F.; Modena, G.; Paradisi, C.; Giancaspro, C.; Speranza, M. J. Org. Chem. 1985, 50, 4973-4975. (b) Mishima, M.; Shimizu, N.; Tsuno, Y.; Ariga, T.; Isomura, K.; Kobayashi, S.; Taniguchi, H. Memoirs **Fat.** Science, Kyusha Univ., Ser. C 1988, 16, 217-224.

(4) (a) Gassman, P.G.; Tidwell, T.T. **Act.** Chem. Res. 1983, 16, 279-285. (b) Tidwell, T.T. Angew. **Chem. Int.** Ed. Engi. 1984, 23, 20-32. (c) Lenoir, D. C hem. Ber. 1975, 108, 2055-2072. (d) Kirmse, W.; Mrotzeck, U.; Siegfried, R. Angew. Chem. Int. Ed. Engl. 1985, 24, 55-56. (e) Gassman, P.G.; Harrington, C.K. J. Org. Chem. 1984, 49, 2258-2273. (f) Gassman, P.G.; Hall, J.B. J. Am. Chem. Sot. 1984, 106, 4267-4269.

(5) (a) Kobayashi, Y.; Yamashita, T.; Takahashi, K.; Kuroda, H.; Kumadaki, I. **Chem. Pharm. Bull. 1984, 32, 4402-4409** . (b) Bunch, J.E.; Bumgardner, C.L. **J. Fluorine Chem. 1987, 36, 313-317.**

(6) Allen, A.D.; Rosenbaum, M.; Seto, N.O.L.; Tidwell, T.T. **J. Org. Chem. 1982, 47, 4234-4239.**

(7) (a) Yates, K.; Schmid, G.H.; Regulski, T.W.; Garratt, D.G.; Leung, H.-W.: McDonald, R. **J. Am.** Chem. Sot. 1973, 95, 160-165. (b) Noyce, D.S.; Matesich, M.A.; Peterson, P.E. Ibid. 1967, 89, 6225-6230. (c) Noyce, D.S.; DeBruin, K.E. Ibid. 1968, 90, 372-377. (d) Noyce, D.S.; Schiavelli, M.D. J. Org. Chem. 1968, 33, 845-846.

(8) Measured as previously described^{3a} using a Nicolet FT-MS 1000 spectrometer of the "Servizio FT-MS, Area di Ricerca de1 CNR di Roma".

(Received in USA 20 December 1988)